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STRAIGHT SKELETONS

r Aichholzer, Aurenhammer, Alberts, Gärtner 1995 [2].r Wavefront propagation: shrinking, mitered offset curves of polygon P.r Traces of wavefront vertices are the edges of the straight skeleton S(P).
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TOPOLOGY CHANGES – EDGE AND SPLIT EVENTS

r Wavefront topology changes over time.r edge event: an edge of the wavefront vanishes.r split event: wavefront splits into two parts.r In S(P), events (topology changes) are witnessed by nodes.
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r Wavefront topology changes over time.r edge event: an edge of the wavefront vanishes.r split event: wavefront splits into two parts.r In S(P), events (topology changes) are witnessed by nodes.
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CONSTRUCTING THE STRAIGHT SKELETON

Algorithm time space
Aichholzer, Aurenhammer ’98 [1] O(n3 log n) O(n)
Eppstein, Erickson ’99 [5] ? O(n17/11+ε)

Cacciola ’04 [3] O(n2 log n) O(n2)

Huber and Held ’10 [7] O(n2 log n) O(n)
Vigneron and Yan ’13 [8] ?? O(n4/3+ε) O(n)

r Popular approach: Simulate the wavefront propagation.r Main Problem: Identify next event.r Edge events are cheap. Split events are expensive.

Can we do better for specific input classes?

YES, FOR (STRICTLY) MONOTONE POLYGONS.
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MONOTONE POLYGONS

m

Cn

Cs
P

r Strictly monotone chain C (monotone w.r.t. to a line m):
Polygonal chain that intersects normals of m in at most one point.

r Strictly monotone polygon P (monotone w.r.t. to a line m):
Simple polygon that can be split into two strictly monotone chains.
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MONOTONE POLYGONS - PRIOR WORK

Das et al. claim O(n log n) time algorithm [4]:r Requires general position.r Correctness?
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LEMMATA I

r The wavefront propagation of strictly monotone polygonal chain C changes
only when edges collapse.r In particular, the wavefront never splits into parts.

r Consequence: We can construct S(C) in O(n log n) time.
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LEMMATA II
r In S(P), a unique chain M of arcs connects west to east.r S(P) north of M is not influenced by the south chain.r S(P) north of M is identical to S(Cn) between Cn and M.r Given Cn, Cs, S(Cn) and S(Cs), we can find M in time O(n log n).r S(P) comprises M and parts of S(Cn) and S(Cs)
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ALGORITHMr Independently construct the north and south skeletons.r Construct M and clip the north and south skeletons.r Assemble S(P) out of these parts.
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STRAIGHT SKELETONS OF MONOTONE POLYGONS

THEOREM:
We can construct S(P) of strictly monotone polygons P in time O(n log n).
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MONOTONE POLYGONS - DAS ET AL.

Das et al. [4]: claim O(n log n) time algorithm:r Cannot handle vertex events (perturbation cannot work).r Wrongly assumes that split event nodes are located at an offset that is the
distance to their closest supporting line (similar to Felkel [6]).
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